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Integrated Model of Development (Gariépy 1996)

Environment
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Adaptation: goal-directed functional alignment

btw extra- and intra- organimistic conditions.
Optimization: any self-organizing system that is at
equilibrium with its environment must minimize its free
energy (free-energy principle; Friston 2010)

Behavior as the leading edge of adaptation.

Changes in adapted states.
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Mathematical Representation

dx = x — xA2 dx = x — .4xy, dy = — y + .6xy
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Adapted state (e.g., skill level): equilibrium

Behavior: interaction/multiplication (e.g., with a problem, a
student/teacher)
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Judy and Nick
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Collaboration and Competition

SN T Judy(t) — Judy(t)? + adudy(t)Nick(t)
%’;ﬂ) ~ | p(Nick(t) — Nick(t)?) 4 bJudy (t)Nick(t)
p > 0 : Frequency paramters
= b = 0 : No interaction; Self-regulation
,b > 0 : Collaboration; a, b < 0 : Competition

rho=0.5, a=0.4, b=0.6 rho=0.5, a=—0.6, b=—0.4
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Extensions to multi-dimensional models

N-subject Lotka-Volterra equations (i,j = 1,2,--- , N)

ax; A Xi+ > iz @jXj
dt I(X17X27 7XN) P/X/( l’(, )7

pi. growth parameters that determine the steepness of the
logistic growth functions
K;: the carrying capacity parameters that represent the
limited resources
aj are relation parameters that specify the interaction effects
between each pair of x;
The system is competitive if %ff < O0fori#j;andis
cooperative if ‘g—g >0 for i #j.
3-person groups are necessary and sufficient to perform
better than the best individuals on highly intellective
problems (Laughlin et al. 2006).
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Markov-switching
Dynamic models
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Dynamic Systems approach

Definition
systems of elements that change over time (Thelen and
Smith 1994)
a class of mathematical equations that describe time-based
systems with particular properties

Discrete-time Model
time: integers 1,2,3, - - -
change as differences

Continuous-time Models

time: real numbers
change as rate of change
limit of discrete-time models
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Modeling Framework

Dynamic Model
Discrete-time State-Space models
Xi(tij) = Fo, (Xi(tiji—1)) + Ci(ti), Gi(tij) ~ N(O, =¢)
Continuous-time Ordinary and Stochastic Differential
Equation (ODE & SDE)
ax;(t) = Fe, ,(xi(t), t)at + G, ,(t)dw(1)
Measurement Model
Yi(tij) = 4+ Axi(t;;) + €i(tij), €i(ti ;) ~ N(0,Xy)
Initial condition x4 (t ;) ~ N(Xo, Po)
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What are regime-switching dynamic models?

A regime—switching longitudinal model consists of several
latent (unobserved) classes—or “regimes.” Within each class,
a submodel is used to described the distinct change
patterns associated with the class.

Each “regime” can be thought of as one of the stages or
phases of a dynamic process.

Individuals can switch between classes or regimes over
time.

The changes that unfold within a regime are continuous in
nature.
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Initial regime probabilities
Transition probabilities
Multinomial logistic regression models are used to represent the

initial regime probabilities and describe each individual i’s
transition in class membership from time t-1 to time f as

exp(@k1 + b4 Xi1)
S _yexp(ast + bl X))’

exp(axt + bl Xit)
ZfH exp(ast + b Xit)

A
Pr(Sit = K|Xi1,0) = mpc i1 =

. A
Pr(Sit = k|Sit—1 = J, Xit, 0) = Tjx it =

Si = individual i’s class membership at time ¢

K = the number of regimes
ai = the logit intercept for the kth regime at time t
X; = a vector of covariates for person i at time t

b; = avector of logit slopes for the kth regime at time t
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Estimation:

The dynr R package

(Ou, Hunter, and Chow 2017)

Ou (ACTNext) BayLAN2018 Feb 24,2018 13/29



Theory of learning Modeling Framework Estimation Example scripts Take-home Message References

[e]e]e]e]e] 00000 O@000 00000000

*(*What can dynr do? Dynr Facts 1-5

Dynr fits discrete- and continuous-time dynamic models
to multivariate longitudinal/time-series data.

Dynr handles linear and nonlinear dynamic models with
an easy-to-use interface.

Dynr allows model specification in matrix and formula
forms.
Dynr allows automatic differentiation.

Dynr deals with dynamic models with regime-switching
properties.

Caveat: Only linear measurement
Dynr computes in C and runs fast.
Dynr provides ready-to-present results through LaTex
equations and plots.
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Models, Algorithms, and Software for the Framework

in dynr

Discrete-Time Continuous-Time
° linear Linear State-Space model Linear SDE/ODE
£ KF CDEKF
5 dynr, OpenMx, pomp, KFAS, dim, dse, dynr, pomp, OpenMx, ctsem,
o MKFM6, SsfPack, MATLAB MATLAB
<
2 nonlinear Nonlinear State-Space model Nonlinear SDE/ODE
@ EKF CDEKF
dynr, pomp, SsfPack, MATLAB dynr, pomp, MATLAB
© linear RS State-Space model RS SDE/ODE
E Kim filter CD Kim filter
54 dynr, dynr only
< GAUSS code, MATLAB
a
= nonlinear RS Nonlinear State-Space model RS Nonlinear SDE/ODE
= Extended Kim filter CD extended Kim filter
dynr only dynr only

SDE = Stochastic Differential Equation, ODE = Ordinary Differential Equation, CD = Continuous-
Discrete, RS = Regime-Switching, KF = Kalman filter (Kalman 1960), EKF = Extended Kalman filter
(Anderson and Moore 1979; Bar-Shalom, Li, and Kirubarajan 2001), Kim filter = KF + Hamilton
filter + Collapse procedure (Kim and Nelson 1999). Extended Kim filter was proposed by (Chow
and Zhang 2013); the CD extended Kim filter is proposed by (Chow, Ou, et al. 2018).
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Extended Kalman Filter

Time update (Prediction)
Measurement Update (Correction)

Vi = Yk — ARkji—1, Ro e = Be + APy AT
K¢ = Pq—1ATR,;
Kijk = Xigk—1 + KicVie, Pk = Prq—1 — K APy

Optimization
log L(6) = 1 37 4 S/ (—piklog(2m) — log |Re x| — v/ R Vi)
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Extended Kalman Filter

Prediction (Discrete-time)

X1 = F(t, X 1)1-1)
OF (t, X(t OF(t, x(t))"
Puy = DA SR g
Prediction (Continuous-time)
ax N
ot F(t, X;—1)t-1)
OF(t, x(t OF(t, X(t

pp(t) = 22X O) py P(t)((a)?()))T +Q(t)

ox

Solve these differential equations using Runge-Kutta ODE
solver.
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[e]e]e]e]e] 00000 00000 [e] le]e]e]e]e]e)

<4 dynr preparation

Gather data with dynr.data ()

Prepare recipes with
prep.measurement ()
prep.xDynamics ()
prep.initial ()
prep.noise ()
prep.regimes () (optional)

Mix recipes and data into a model with
dynr.model ()
Cook model with dynr . cook ()
Serve results with

summary ()

plot ()

dynr.ggplot ()

plotFormula ()
printex ()

€ J

Ou (ACTNext) Feb 24,2018 19/29




of learning Y Example scripts Tak

[e]e] le]e]ele]e)

Collaboration and Competition

Example script

require (dynr)
data <— dynr.data(data.simulate,
id="id", time="time",
observed=c("x","y"), covariates = "cond")
meas <— prep.measurement(
values.load=diag (1, 2),
obs.names = c('x', 'y'),
state .names=c( 'Judy ', 'Nick"'))
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Collaboration and Competition

Example script

formula=1list (
list (Judy~ Judy—Judy”2—a=*Judy=*Nick,
Nick~ rho=(Nick—Nick”2)—b=*Judy=*Nick),
list (Judy~ Judy—Judy”2+c*Judy=*Nick,
Nick~ rho=(Nick—Nick”2)+d=+Judy=«Nick))
dynm<—prep .formulaDynamics (
formula=formula,
startval=c(rho = 0.5,
a=0.5, b=0.5, ¢=0.5, d=0.5),
isContinuousTime=TRUE)
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Collaboration and Competition

Example script

model <— dynr.model(
dynamics=dynm, measurement=meas,
noise=mdcov, initial=initial ,
regimes=regimes, transform=trans,
data=data,
outfile="CompeteCollaborate.c")
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Collaboration and Competition
Example script

# Estimate free parameters

res <— dynr.cook(model)

# Examine results

summary(res)

plotFormula (model,
ParameterAs=res@transformed. parameters)

plot(res, dynrModel = model, style=1)
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Results from dynr

34

N w e

Smoothed State Values

i

0 25 50 75
time

regime Competition Cooperation variable Judy Nick
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Results from dynr

Dynamic Model
Regime 1:
d@udy(t)) = (Judy(t) — Judy(t)? — 0.56 x Judy(t) x Nick(t))dt
d(Nick(t)) = (0.5 x (Nick(t) — Nick(t)?) — 0.37 x Judy(t) x Nick(t))dt
Regime 2:
d(Judy(t)) = (Judy(t) — Judy(t)? + 0.4 x Judy(t) x Nick(t))dt
d(Nick(t)) = (0.5 x (Nick(t) — Nick(t)?) + 0.6 x Judy(t) x Nick(t))dt
Measurement Model
X =Judy +&;

y = Nick + &5
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<4 Discussion

Modeling the start and end of the collaborative
learning process

Reconsider the current modeling framework:
relations between measurement and latent states
Implications for adaptive learning:

Test to learn:
test as intervention and source of motivation
Continuous tutoring and monitoring

Application to real data.
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Thank you for your attention!
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