Dynamically modeling collaborative learning processes

Lu Ou

ACTNext

Feb 24, 2018

Ou (ACTNext) BavLAN2018 Feb 24, 2018 1 / 29

Overview

Theory of learning

Modeling Framework

Estimation

Example scripts

Take-home Message

Ou (ACTNext) BayLAN2018 Feb 24, 2018 2 / 29 Theory of learning

•0000

Integrated Model of Development (Gariépy 1996)

- Adaptation: goal-directed functional alignment btw extra- and intra- organimistic conditions.
- Optimization: any self-organizing system that is at equilibrium with its environment must minimize its free energy (free-energy principle; Friston 2010)
- Behavior as the leading edge of adaptation.
- Changes in adapted states.

Ou (ACTNext) BayLAN2018 Feb 24, 2018 3 / 29

Theory of learning

00000

Mathematical Representation

- Adapted state (e.g., skill level): equilibrium
- ► Behavior: interaction/multiplication (e.g., with a problem, a student/teacher)

Ou (ACTNext) BayLAN2018 Feb 24, 2018 4 / 29

Judy and Nick

Ou (ACTNext) BayLAN2018 Feb 24, 2018 5 / 29

Collaboration and Competition

Theory of learning

00000

$$\begin{bmatrix} \frac{d \ \textit{Judy}(t)}{d \ \textit{t}} \\ \frac{d \ \textit{Nick}(t)}{d \ \textit{t}} \end{bmatrix} = \begin{bmatrix} \textit{Judy}(t) - \textit{Judy}(t)^2 + \textit{aJudy}(t) \textit{Nick}(t) \\ \rho(\textit{Nick}(t) - \textit{Nick}(t)^2) + \textit{bJudy}(t) \textit{Nick}(t) \end{bmatrix}$$

 $\rho > 0$: Frequency paramters

a = b = 0: No interaction; Self-regulation

a, b > 0: Collaboration; a, b < 0: Competition

References

Ou (ACTNext) BayLAN2018 Feb 24, 2018 6 / 29

Theory of learning

00000

Extensions to multi-dimensional models

▶ N-subject Lotka-Volterra equations $(i, j = 1, 2, \dots, N)$

$$\frac{dx_i}{dt} = F_i(x_1, x_2, \cdots, x_N) \stackrel{\Delta}{=} \rho_i x_i (1 - \frac{x_i + \sum_{i \neq j} a_{ij} x_j}{K_i}),$$

- ρ_i : growth parameters that determine the steepness of the logistic growth functions
- K_i: the carrying capacity parameters that represent the limited resources
- a_{ij} are relation parameters that specify the interaction effects between each pair of x_i
- The system is *competitive* if $\frac{\partial F_i}{\partial x_j} \leq 0$ for $i \neq j$; and is *cooperative* if $\frac{\partial F_i}{\partial x_i} \geq 0$ for $i \neq j$.
- 3-person groups are necessary and sufficient to perform better than the best individuals on highly intellective problems (Laughlin et al. 2006).

Ou (ACTNext) BayLAN2018 Feb 24, 2018 7/29

Markov-switching Dynamic models

Ou (ACTNext) BavLAN2018 Feb 24, 2018 8 / 29

Dynamic Systems approach

Definition

- systems of elements that change over time (Thelen and Smith 1994)
- a class of mathematical equations that describe time-based systems with particular properties

Discrete-time Model

- time: integers 1, 2, 3, · · ·
- change as differences

Continuous-time Models

- time: real numbers
- change as rate of change
- limit of discrete-time models

Ou (ACTNext) BavLAN2018 Feb 24, 2018 9 / 29

Dynamic Model

- Discrete-time State-Space models $\mathbf{x}_i(t_{i,j}) = F_{\theta_{f,i}}(\mathbf{x}_i(t_{i,j-1})) + \zeta_i(t_{i,j}), \zeta_i(t_{i,j}) \sim \mathcal{N}(\mathbf{0}, \Sigma_{\zeta})$
- Continuous-time Ordinary and Stochastic Differential Equation (ODE & SDE)

$$d\mathbf{x}_i(t) = F_{\theta_{f,i}}(\mathbf{x}_i(t), t)dt + G_{\theta_{f,i}}(t)d\mathbf{w}(t)$$

Measurement Model

$$extbf{\emph{y}}_i(t_{i,j}) = \mu + \Lambda extbf{\emph{x}}_i(t_{i,j}) + \epsilon_i(t_{i,j}), \epsilon_i(t_{i,j}) \sim extbf{\emph{N}}(extbf{0}, \Sigma_{ extbf{\emph{y}}})$$

Initial condition $\mathbf{x}_1(t_{1,i}) \sim \mathcal{N}(\mathbf{x}_0, \mathbf{P}_0)$

Ou (ACTNext) BavLAN2018 Feb 24, 2018 10 / 29

What are regime-switching dynamic models?

- A regime—switching longitudinal model consists of several latent (unobserved) classes—or "regimes." Within each class, a submodel is used to described the distinct change patterns associated with the class.
- Each "regime" can be thought of as one of the stages or phases of a dynamic process.
- Individuals can switch between classes or regimes over time.
- The changes that unfold within a regime are continuous in nature.

Ou (ACTNext) BavLAN2018 Feb 24, 2018 11 / 29

Initial regime probabilities Transition probabilities

Multinomial logistic regression models are used to represent the initial regime probabilities and describe each individual i's transition in class membership from time t-1 to time t as

$$\Pr(S_{i1} = k | \mathbf{x}_{i1}, \theta) \stackrel{\Delta}{=} \pi_{k,i1} = \frac{\exp(a_{k1} + \mathbf{b}'_{k1} \mathbf{x}_{i1})}{\sum_{s_{1}=1}^{K} \exp(a_{s1} + \mathbf{b}'_{s1} \mathbf{x}_{i1})},$$

$$\Pr(S_{it} = k | S_{i,t-1} = j, \mathbf{x}_{it}, \theta) \stackrel{\Delta}{=} \pi_{jk,it} = \frac{\exp(a_{kt} + \mathbf{b}'_{kt} \mathbf{x}_{it})}{\sum_{st=1}^{K} \exp(a_{st} + \mathbf{b}'_{st} \mathbf{x}_{it})}$$

 S_{it} = individual *i*'s class membership at time *t*

K = the number of regimes

 a_{kt} = the logit intercept for the kth regime at time t

 \mathbf{x}_{it} = a vector of covariates for person i at time t

 $\mathbf{b}_{kt} = \mathbf{a}$ vector of logit slopes for the kth regime at time t

Ou (ACTNext) BayLAN2018 Feb 24, 2018 12 / 29

Estimation:

The dynr R package

(Ou, Hunter, and Chow 2017)

Ou (ACTNext) BayLAN2018 Feb 24, 2018 13 / 29

What can dynr do? Dynr Facts 1-5

- 1 Dynr fits discrete- and continuous-time dynamic models to multivariate longitudinal/time-series data.
- 2 Dynr handles linear and nonlinear dynamic models with an easy-to-use interface.
 - Dynr allows model specification in matrix and formula forms.
 - Dynr allows automatic differentiation.
- 3 Dynr deals with dynamic models with regime-switching properties.
 - Caveat: Only linear measurement
- Dynr computes in C and runs fast.
- 5 Dynr provides ready-to-present results through LaTex equations and plots.

Ou (ACTNext) BayLAN2018 Feb 24, 2018 14 / 29

Models, Algorithms, and Software for the Framework in **dynr**

		Discrete-Time	Continuous-Time
	linear	Linear State-Space model	Linear SDE/ODE
Ĕ		<u>KF</u>	CDEKF
g		dynr, OpenMx, pomp, KFAS, dlm, dse,	dynr, pomp, OpenMx, ctsem,
Single-Regime		MKFM6, SsfPack, MATLAB	MATLAB
ge			
泛	nonlinear	Nonlinear State-Space model	Nonlinear SDE/ODE
•,		<u>EKF</u>	CDEKF
		dynr, pomp, SsfPack, MATLAB	dynr, pomp, MATLAB
<u>e</u>	linear	RS State-Space model	RS SDE/ODE
Ë		Kim filter	CD Kim filter
æ,		dynr,	dynr only
Multiple-Regime		GAUSS code, MATLAB	
효			
₽	nonlinear	RS Nonlinear State-Space model	RS Nonlinear SDE/ODE
2		Extended Kim filter	CD extended Kim filter
		dynr only	dynr only

SDE = Stochastic Differential Equation, ODE = Ordinary Differential Equation, CD = Continuous-Discrete, RS = Regime-Switching, KF = Kalman filter (Kalman 1960), EKF = Extended Kalman filter (Anderson and Moore 1979; Bar-Shalom, Li, and Kirubarajan 2001), Kim filter = KF + Hamilton filter + Collapse procedure (Kim and Nelson 1999). Extended Kim filter was proposed by (Chow and Zhang 2013); the CD extended Kim filter is proposed by (Chow, Ou, et al. 2018).

Ou (ACTNext) BayLAN2018 Feb 24, 2018 15 / 29

Extended Kalman Filter

- Time update (Prediction)
- Measurement Update (Correction)

$$egin{aligned} oldsymbol{v}_k &= oldsymbol{y}_k - \Lambda \hat{oldsymbol{x}}_{k|k-1}, oldsymbol{R}_{oldsymbol{e},k} &= \Sigma_\epsilon + \Lambda \hat{oldsymbol{P}}_{k|k-1} \Lambda^T oldsymbol{K}^T \ oldsymbol{K}_k &= \hat{oldsymbol{P}}_{k|k-1} \Lambda^T oldsymbol{R}_{e,k}^{-1} \ \hat{oldsymbol{x}}_{k|k} &= \hat{oldsymbol{X}}_{k|k-1} + oldsymbol{K}_k oldsymbol{v}_k, \hat{oldsymbol{P}}_{k|k} &= \hat{oldsymbol{P}}_{k|k-1} - oldsymbol{K}_k \Lambda \hat{oldsymbol{P}}_{k|k-1} \end{aligned}$$

Optimization

$$\log L(\theta) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{T} (-p_{i,k} \log(2\pi) - \log |\mathbf{R}_{e,k}| - \mathbf{v}_{i,k}' \mathbf{R}_{e,k}^{-1} \mathbf{v}_{i,k})$$

Ou (ACTNext) BavLAN2018 Feb 24, 2018 16 / 29 Prediction (Discrete-time)

$$\hat{\mathbf{x}}_{t|t-1} = F(t, \hat{\mathbf{x}}_{t-1|t-1})
P_{t|t-1} = \frac{\partial F(t, \hat{\mathbf{x}}(t))}{\partial \hat{\mathbf{x}}} P_{t-1|t-1} \frac{\partial F(t, \hat{\mathbf{x}}(t))}{\partial \hat{\mathbf{x}}}^{\mathsf{T}} + Q$$

Prediction (Continuous-time)

$$\frac{d\hat{\mathbf{x}}}{dt} = F(t, \hat{\mathbf{x}}_{t-1|t-1})$$

$$DP(t) = \frac{\partial F(t, \hat{\mathbf{x}}(t))}{\partial \hat{\mathbf{x}}} P(t) + P(t) \left(\frac{\partial F(t, \hat{\mathbf{x}}(t))}{\partial \hat{\mathbf{x}}}\right)^T + Q(t)$$

Solve these differential equations using Runge-Kutta ODE solver.

Ou (ACTNext) BayLAN2018 Feb 24, 2018 17 / 29

Example scripts

Ou (ACTNext) BayLAN2018 Feb 24, 2018 18 / 29

- Gather data with dynr.data()
 - Prepare recipes with

```
prep.measurement()
```

- prep.*Dynamics()
- prep.initial()
- prep.noise()
- prep.regimes() (optional)
- Mix recipes and data into a model with dynr.model()
- Cook model with dynr.cook()
- Serve results with
 - summary()
 - plot()
 - dynr.ggplot()
 - plotFormula()
 - printex()

Ou (ACTNext) BavLAN2018 Feb 24, 2018 19 / 29

Collaboration and Competition

Example script

```
require (dynr)
data <- dynr.data(data.simulate,
  id="id", time="time",
  observed=c("x","y"), covariates = "cond")
meas <- prep.measurement(
  values.load=diag(1, 2),
  obs.names = c('x', 'y'),
  state.names=c('Judy', 'Nick'))
```

Ou (ACTNext) BavLAN2018 Feb 24, 2018 20 / 29

Collaboration and Competition

Example script

```
formula=list(
  list(Judy~ Judy-Judy^2-a*Judy*Nick,
       Nick~ rho*(Nick-Nick^2)-b*Judy*Nick),
  list (Judy~ Judy-Judy^2+c*Judy*Nick,
       Nick~ rho*(Nick-Nick^2)+d*Judy*Nick))
dynm<-prep.formulaDynamics(
  formula=formula.
  startval = c(rho = 0.5)
    a=0.5, b=0.5, c=0.5, d=0.5),
  isContinuousTime=TRUE)
```

Ou (ACTNext) BavLAN2018 Feb 24, 2018 21 / 29

Collaboration and Competition

Example script

```
model <- dynr.model(
  dynamics=dynm, measurement=meas,
  noise=mdcov, initial=initial,
  regimes=regimes, transform=trans,
  data=data,
  outfile="CompeteCollaborate.c")</pre>
```

Ou (ACTNext) BayLAN2018 Feb 24, 2018 22 / 29

Collaboration and Competition

Example script

```
# Estimate free parameters
res <- dynr.cook(model)
# Fxamine results
summary (res)
plotFormula (model.
  ParameterAs=res@transformed.parameters)
plot(res, dynrModel = model, style=1)
```

Ou (ACTNext) BavLAN2018 Feb 24, 2018 23 / 29

Results from dynr

Ou (ACTNext) BayLAN2018 Feb 24, 2018 24 / 29

Dynamic Model

Regime 1:

$$d(Judy(t)) = (Judy(t) - Judy(t)^{2} - 0.56 \times Judy(t) \times Nick(t))dt$$

$$d(\text{Nick}(t)) = (0.5 \times (\text{Nick}(t) - \text{Nick}(t)^2) - 0.37 \times \text{Judy}(t) \times \text{Nick}(t))dt$$

Regime 2:

$$d(Judy(t)) = (Judy(t) - Judy(t)^{2} + 0.4 \times Judy(t) \times Nick(t))dt$$

$$d(Nick(t)) = (0.5 \times (Nick(t) - Nick(t)^{2}) + 0.6 \times Judy(t) \times Nick(t))dt$$

Measurement Model

$$x = Judy + \varepsilon_1$$

$$v = Nick + \varepsilon_2$$

Ou (ACTNext) BavLAN2018 Feb 24, 2018 25 / 29

Discussion

- Modeling the start and end of the collaborative learning process
- Reconsider the current modeling framework: relations between measurement and latent states.
- Implications for adaptive learning:
 - Test to learn: test as intervention and source of motivation
 - Continuous tutoring and monitoring
- Application to real data.

Thank you for your attention!

Acknowledgements

- Gunter Maris, Vanessa Simmering, Benjamin Deonovic, Alina von Davier
- Sy-Miin Chow, Michael Hunter, Jiangang Hao, Zhaohua Lu, Timothy Brick, Meng Chen, Linying Ji, Sukruth Reddy, and etc.
- The ACTNext group
- The QuantDev Group at Penn State

Ou (ACTNext) BayLAN2018 Feb 24, 2018 27 / 29

References

- B. D. O. Anderson and J. B. Moore. Optimal Filtering. Englewood Cliffs, NJ: Prentice Hall, 1979.
- Y. Bar-Shalom, X. R. Li, and T Kirubarajan. *Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software.* New York, NY: John Wiley & Sons, 2001.
- Sy-Miin Chow, Lu Ou, et al. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching". In: *Psychometrika* (2018).
- Sy-Miin Chow and Guangjian Zhang. "Nonlinear Regime-Switching State-Space (RSSS) Models". In: Psychometrika 78.4 (2013), pp. 740–768.
- Karl Friston. "The free-energy principle: A unified brain theory?". In: Nature Reviews 11 (2010), pp. 127–138.
- Jean-Louis Gariépy. "The Question of Continuity and Change in Development". In: Developmental Science. Ed. by Robert B Cairns, Glen H Elder, and Elizabeth Jane Costello. New York: Cambridge University Press, 1996. Chap. 5, pp. 78–96.

Ou (ACTNext) BayLAN2018 Feb 24, 2018 28 / 29

References (cont.)

- Rudolph Emil Kalman. "A New Approach to Linear Filtering and Prediction Problems". In: *Journal of Basic Engineering* 82.1 (1960), pp. 35–45.
- C-J Kim and Charles R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. Cambridge, MA: MIT Press. 1999.
- Patrick R. Laughlin et al. "Groups Perform Better Than the Best Individuals on Letters-to-Numbers Problems: Effects of Group Size". In: *Journal of Personality* and Social Psychology 90.4 (2006), pp. 644–651.
- Lu Ou, Michael D. Hunter, and Sy-Miin Chow. dynr: Dynamic Modeling in R. R package version 0.1.11-5. 2017.
- Esther Thelen and Linda B Smith. A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge, MA: MIT Press, 1994.

Ou (ACTNext) BayLAN2018 Feb 24, 2018 29 / 29